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Abstract 

A molecular dynamics investigation of the effects of a diluent on the detonation of a 
model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally 
react with any species of the system, is inserted into the crystalline explosive in two ways. The 
first series of simulations investigates the attenuation of the energy of a detonation wave in a 
pure explosive after it encounters a small layer of crystalline diluent that has been inserted into 
the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters 
pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation 
wave exceeds a threshold value. The second series of simulations investigates detonation of 
solid solutions of different concentrations of explosive and diluent. For both types of 
simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a 
critical number density behind the shock front. Once this critical density is reached, the 
explosive molecules transition to an atomic phase. This is the first step in the reaction 
mechanism that leads to the heat release that sustains the detonation. The reactive fragments 
formed from the atomization of the heteronuclear reactants subsequently combine with new 
partners, with homonuclear product formation exothermally favored. 
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1. Introduction 

The process known as detonation has received considerable attention for its unique chemistry 

and physics and its military and industrial applications. Many explosives are well characterized at 

the macroscale and are adequately described at this level by hydrodynamic theories [1,2]. However, 

atomic-level details of detonation are not completely resolved, resulting in a gap in information that 

could otherwise be exploited in designing energetic materials with controlled detonation 

characteristics. This information includes features of the mechanisms of the chemical reactions and 

energy transfer that drive the detonation wave and conditions that affect these mechanisms. Much 

has been written concerning the first step in reactions of an explosive to produce a detonation wave 

[3,4]. Traditional views of the first step have assumed rupture of the weakest bond of the energetic 

molecule by thermal activation and/or mechanical stripping of fragments. Subsequently, the reactive 

species combine chemically and release energy to sustain the detonation. More recently, 

metallization has been invoked as a possible rate-controlling mechanism in the initial step [5]. 

Experimental data that could identify these various mechanisms are not available due to the small 

time and spatial scales over which detonation occurs. Typical detonation waves propagate through 

condensed media at speeds ranging from 1 to 10 km/s (1-10 nm/ps) and are currently outside the 

scope of experimental probe. Measurement is further complicated by the extreme energy and 

pressure release. The experimental community has made extensive progress toward measurement 

of detonation at subnanoscale regimes [4], but the necessary scale has yet to be reached. 

Information at the microscale is readily obtained from molecular simulation. Through it, the 

viewer observes and measures the dynamic events associated with detonation at the appropriate time 

and spatial scales. The motion of and force experienced by each particle in such a simulation can 

be monitored over time, allowing the investigator to witness reaction mechanisms. Several 

molecular dynamics studies of shock-induced reaction waves in energetic molecular crystals show 

that detonation can be simulated using the method of molecular dynamics [6-25]. The main 

limitation of such studies to date, however, is the highly idealized representation of the energetic 

molecular system. Many common explosives are large, polyatomic, organic molecules; and the 



reactions leading to detonation are thought to consist of several steps leading to the heat release that 

sustains the reaction wave. Most systems used in molecular simulations are simple di- and triatomic 

molecular crystals, and the heat-release reaction usually involves no more than two steps [6-25]. 

Despite these limitations, the simulations using such models have been extremely successful in 

reproducing characteristics of a detonation. In particular, the models of explosives developed by 

White and co-workers represent the chemistry thought to occur in detonation, and explicitly include 

many-body effects [17,18]. These models, which use a modified Tersoff [26,27] form to describe 

the inter- and intramolecular interactions, have been successfully used to simulate chemically 

sustained reaction waves in crystals [16-18, 20-25]. Such successes can be augmented by using 

information gained from simulations to design an energetic material with specific performance 

properties. The present study explores this possibility, using results from previous molecular 

dynamics investigations of detonation [20, 21]. It was found that the first step in the reaction 

sequence leading to detonation is the compression of the energetic solid to a critical density [20]. 

The simulations show that detonation will result if the critical density of the energetic material is 

reached. A reasonable inference would be that the energetic material can be tailored such that this 

critical density will not be reached, except under specific and controlled conditions. Tailoring 

toward desensitization could occur through the addition of inert dopants or defects, which would 

influence the degree of compression of the explosive due to shock wave passage. The work reported 

here explores this hypothesis. 

We present results from molecular dynamics simulations that investigate the effect on detonation 

of an explosive by the addition of an inert, heavy diluent. This diluent is inserted into the explosive 

crystal in either a layered fashion (slab simulations) or as part of a solid solution (solid-solution 

simulations). The "slab" simulations investigate the conditions necessary for a slab of inert material 

inserted into the lattice to quench a detonation wave propagating through a pure explosive. The 

solid-solution simulations investigate the behavior of mixtures of explosive and diluent after shock 

initiation. Finally, the dependence of detonation on the degree of compression of the material is 

determined. 



2. Model 

The models in this study are all two-dimensional (2-D), and consist of diatomic molecules 

arranged in herringbone lattices. The explosive molecules are denoted hereafter as "A-B" and the 

diluent molecules will be denoted as "C2". All particles in the system interact through the following 

interaction potential, a modified form ofthat developed in Brenner et al. [17,18]: 

V = 11 (fc(V[(2-Bij) VV -B}j VA(rg)] + Vvdw}. (1) 

Parameters for the function and a description of the properties of this interaction potential are given 

in Rice et al. [20,21]. The VR and VA terms are functions that describe intramolecular repulsions 

and attractions, respectively. The Vvd^ term describes nonbonding interactions. A many-body term, 

denoted as IT, modifies the intramolecular interactions of a pair of atoms, i and j, according to the 

distribution of atoms surrounding the i-j pair. The value of By ranges from 0 to 1 and depends only 

on the arrangement of atoms surrounding each atom pair. The value of B- does not depend on the 

atom type. The form of this potential attenuates the attractive intramolecular interaction and 

increases the repulsive interaction as an atom pair experiences an increasingly dense local 

environment, such as that occurring through shock wave passage. The previous study [21] showed 

that, in the reaction zone (the region behind the shock front in which the A-B molecules had not yet 

reacted), the density was such that the atom pairs within each A-B molecule were experiencing no 

attractions. Thus, the molecules became "unbound" due to the compression of the material by 

passage of the pressure wave. Once the shock wave passed and density of the region decreased, the 

attenuation of intramolecular attractions subsided and the nascent atoms were free to combine with 

new partners. For this system, homonuclear product formation is energetically favored, and 

formation of such provides the energy needed to sustain the detonation wave. 

In the low-temperature, low-pressure, crystal structure, bond strengths of the A-B, A2, and B2 

molecules are 1,5, and 2 eV, respectively. The C atom has the same interaction potential with all 

other species in the system as the A atom. The only difference between the C and A atoms is the 



mass. The mass of the C atom (150 amu) is 10 times that of the A atom (15 amu). The bond 

strength of an isolated C2 molecule is 5 eV, making it more stable than reactants by 4 eV. Also, the 

Cj molecule has the same internuclear bond distance as the A2 molecule (1.2 Ä). The C2 molecule 

can be dissociated with sufficient energy. However, there is no net energy change upon formation 

of C-A or recombination to form C2. Also, formation of C-B is endothermic. Thus, Q is appropriate 

as an "inert" diluent for desensitization of the model A-B explosive. The exothermic reactions for 

this system are: 

B-A + A > B + A2 E = - 4.0 eV, 

and 

A-B + B > A + B2 AE = -1.0 eV. 

Due to the form of the interaction potential in equation (1), the C atom can influence the 

intramolecular interactions experienced by atom pairs in this system. Thus, atom pairs within a 

mixture of diluent and explosive described by this form of potential energy function will experience 

similar modifications of intramolecular forces upon compression, as seen in the pure explosive. 

3. Details of the Calculations 

Details of the molecular dynamics simulations of the tailored explosives are the same as those 

described in Rice et al. [section m.D., 20]. The most significant difference in the simulations is that 

the models do not consist of pure explosive but include the diluent Q molecules. Figure 1 represents 

the lattice models used in this study. For all simulations, all atoms in the simulation box are 

arranged in the local equilibrium position associated with the herringbone lattice. Atoms in the 

equilibrium herringbone arrangement are illustrated in Figure 2. The upper frame of Figure 2 shows 

the equilibrium herringbone lattice for a solid solution of A-B explosive mixed with diluent C2 

molecules; the pure explosive crystal has the same atomic arrangement and differs only in the 

chemical composition (see Figure 1 of Rice et al. [20]). Each atom is given kinetic energy (KE) 

totaling 20 K partitioned equally between the x- and y-momentum components. The equations of 
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motion for the atoms in the simulation box are integrated for 0.05 ps to allow for randomization of 

the energy in the crystal. A shock wave is then initiated by the impact of a thin flyer plate consisting 

of 64 A2 molecules moving at a velocity of 12 km/s. The earlier work [20] showed that a flyer plate 

of this size, chemical composition, and velocity is sufficient to achieve steady detonation of the pure 

explosive. The shock wave initiates at the far left edge of the simulation cell and propagates to the 

right. The model has cyclic boundary conditions in the y direction but is terminated by a slab of rigid 

A-B molecules at the far right edge of the material. The model is not bound at the left edge but can 

expand in the negative-x direction as the flyer plate rebounds and the rarefaction occurs. The 

temperature of the crystal through which the shock wave will propagate is 20 K. 

As in the previous study [20], the simulations here use the expanding computational window 

technique first developed by Tsai and Trevino [6,7]. The temperature within an 8.68-Ä x 50.16-Ä 

section of the crystal located 60.76 Ä from the far-right edge of the terminating cell is monitored at 

each integration step. When the temperature within this "test" region exceeds that of the undisturbed 

crystal by 50%, it is assumed that the shock wave has propagated into this region. At that point, an 

8.68-Ä x 50.16-Ä section of crystal is inserted immediately before the rigid, terminating cell. The 

atoms in the new segment are arranged in the equilibrium herringbone lattice position, and energy 

totaling 20 K is partitioned into the x- and y-momentum components of each atom. The trajectory 

integration continues, with crystal added as needed to study wave propagation. 

In the previous work [20], the shock front corresponded to the right-most point along the x axis 

in which the mass density was greater than that of undisturbed A-B crystal. This definition of shock 

front position is inadequate for this study, since the mass density of the slab at the low pressure 

equilibrium (22.1 amu/Ä2) greatly exceeds that of shocked A-B explosive (<10 amu/Ä2). For this 

study, the shock front is the rightmost 2.17 Ä x 50.16 Ä section along the x axis of the model in 

which the average KE of the atoms exceeds 50 K. This prescription proved to be both more sensitive 

and stable than, say, using number density. 

3.1 Slab Experiments. The first series of simulations exploits ideas used in measurements of 

explosive sensitivity known as "gap tests" [28]. These tests involve initiating a charge separated 



from the explosive being tested by an attenuating material. The shock wave produced from the 

initiating charge passes through the attenuating material before entering the sample explosive. The 

sensitivity of the explosive is defined in terms of the width of the attenuating material required for 

a 50% probability of initiation. Obviously, a slab of infinite width would completely attenuate the 

energy of the shock wave and the sample explosive would never detonate. The simulations reported 

in this work investigate the quenching of a detonation using such an attenuating material as a 

function of width. 

The models consist of pure A-B crystal except for a slab of material composed of C2 molecules 

inserted into the explosive crystal. Pure explosive (with no defects) is on either side of the slab of 

C2 molecular crystal (Figure 2). After flyer-plate initiation, detonation of the pure explosive is 

allowed to reach steady state before the front reaches the slab of C2 molecules. For each simulation, 

the shock front will reach the slab region at 6.0 ps after shock initiation. The propagating detonation 

wave traverses the C2 slab and then enters another region of pure explosive. The reactions behind 

the shock wave after traversing the diluent region are monitored to decide if detonation is 

reestablished. Five simulations that vary in the width of the slab of C2 molecules are performed. All 

of the slabs run the length of the simulation cell in the y direction (50.16 Ä) and have periodic 

boundary conditions in that dimension. The differences in the sizes of the slabs are due to the width 

in the x direction. The widths of the slabs are 69.4, 86.8, 95.5, 104.2, and 138.9 Ä. These 

simulations are denoted hereafter by the width of the slabs (i.e., 69, 87,95,104, and 139 Ä). 

3.2 Solid Solution. The second set of computer simulations explores the response of 

explosive/diluent solutions upon flyer-plate impact. The A-B explosive is mixed with the previously 

described Q molecules to form solid solutions. Three solutions are chosen, with 31.25%, 34.375%, 

and 37.5% concentration of C2 molecules. The simulations are denoted from now on by 

concentration of C2. The model of the solid solution is prepared as follows: the simulation cell at 

the beginning of the trajectory has dimensions of 69.44 Ä x 50.16 Ä, and the cell is partitioned into 

rectangular sections with dimensions of 8.68 Ä x 50.16 Ä. A section of crystal with these 

dimensions can hold exactly 32 diatomic molecules in the low-pressure, equilibrium, herringbone, 

lattice arrangement. The chemical composition of the 32 diatomic molecules (i.e., A-B or C2) is 



assigned randomly according to the desired percent concentration of diluent molecules. Before the 

flyer plate is allowed to strike the edge of the simulation box of explosive/diluent mixture, the 

system is allowed to relax through a 0.05-ps warmup, molecular dynamics simulation. Energy 

redistribution and equipartitioning between the potential and kinetic energies are ensured by 

monitoring these during the warmup trajectory. After the warmup trajectory, the thin flyer plate of 

A2 molecules moving with a velocity of 12 km/s strikes one edge of the solid solution. As the shock 

wave propagates into undisturbed crystal, the simulation cell expands by the addition of a rectangular 

section of the solid solution, whose chemical composition has a fixed concentration of C2 molecules 

arranged randomly, as described previously. 

4. Results 

4.1 Slab Simulations. The velocity of the shock wave of an unsupported detonation is a 

property of the explosive [1,2]. For pure A-B explosive, the velocity of the detonation wave once 

steady state has been reached is 6.6 km/s [20]. Thus, the velocity of the shock wave through the 

explosive after traversing the slab of diluent is an indicator of whether detonation is reestablished. 

Figure 3 shows the positions of the shock fronts as functions of time for the simulations. The slopes 

of these curves correspond to the velocities of the propagating waves. The slope of each curve from 

0.5 to 6 ps is 6.6 km/s. At 6 ps, the shock front enters the slab of C2 molecules. The horizontal 

arrow in each frame of Figure 3 shows the interval over which the shock front is in the slab of diluent 

molecules. The slope of each curve during this interval is less than that at the earlier interval of 

0.5-6 ps, showing that the shock wave is propagating more slowly. The times in the trajectories at 

which the fronts reenter explosive are 7.8, 8.2, 8.4, 8.7, and 9.7 ps for the 69-, 87-, 95-, 104-, and 

138-Ä slab simulations, respectively. Linear, least-squares fits of the curves from 12 to 15 ps give 

shock wave velocities of 6.8, 6.6, 6.7, 4.4, and 4.3 km/s for the 69-, 87-, 95-, 104-, and 138-Ä 

simulations, respectively. The three simulations in which the shock velocities reach 6.6 km/s in the 

pure A-B explosive after traversing the diluent slab show that detonation is reestablished. 

Detonation of the A-B explosive did not resume after the shock wave traversed the slabs of C2 

molecules with widths of 104 and 138 Ä. 
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Figures 4 and 5 show atomic number densities along the x axis at different times in the 104- and 

95-Ä simulations, respectively. As described in Rice et al. [20], a reactant A-B molecule is 

considered reacted if its internuclear distance exceeds 3.0 Ä, the range of the intramolecular 

interaction potential. The designation of products in the figures merely means that the original A-B 

partners are no longer within the range of intramolecular interaction as defined by the function in 

equation (1). However, this test does not identify the products (homonuclear or heteronuclear 

diatomics or free atoms). Figure 4a shows atomic species profiles at 8.5 ps, soon after the time the 

shock front is reentering pure explosive after traversing the C2 slab. In Figure 4b (0.5 ps later), no 

products have formed in the region beyond the diluent slab. In both Figures 4a and b, the diluent 

slab is compressed to ~75% of its low-pressure, equilibrium width. The species profiles at 12 ps 

(Figure 4c) show that the diluent slab has expanded to approximately its original width (104 Ä) and 

a few products have formed in the region immediately to its right. However, the shock discontinuity 

is over 100 Ä ahead of the location of the products and is followed by unreacted A-B molecules. The 

species profiles in Figure 4d show that the distance between the positions of the shock discontinuity 

and the products along the x direction has increased over a 2.5-ps interval. Also, additional product 

has formed, and the diluent slab has undergone further expansion. Product formation immediately 

ahead of the diluent slab is most likely due to the compression of explosive on both sides. 

Compression from the left is due to expansion of the diluent slab after shock wave passage. 

Compression from the right is due to disturbed A-B explosive, whose rarefaction is blocked by the 

heavy slab of diluent molecules. The compression of explosive results in the initiating step of 

reaction for this system (i.e., atomization due to high density) followed by association to form 

exothermally favored, homonuclear products. However, the heat release from product formation is 

apparently far enough behind the shock front that it does not contribute to continued propagation of 

the shock wave. 

A similar series of species profiles for the trajectory in which the width of the slab of C2 

molecules is 95 Ä is shown in Figure 5. Figure 5a shows the profiles at 8.5 ps, near the point at 

which the shock wave is exiting the slab of C2 molecules. The slab of diluent is compressed to -80% 

of its low-temperature, low-pressure, equilibrium width. Figure 5b shows the species profile 0.5 ps 

later. Unlike the 104-Ä trajectory at this point in the simulation, the diluent slab has expanded and 

11 
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a few products have formed immediately behind the shock front. Substantial product formation 

almost directly behind the shock discontinuity is evident at the later times (Figures 5c and d), and 

the species profiles look similar to those corresponding to unsupported detonation in Rice et al. [20]. 

For those trajectories that reestablish detonation, the density behind the shock front reaches the 

Chapman-Jouguet value of the model explosive, which was shown in the previous work [20] to be 

the key to achieving sustained detonation. Examination of the results reveals that the critical density 

is not reached in the 104- and 138-Ä simulations. For those cases, there is insufficient energy in the 

reentering shock wave to compress the explosive such that atomization and subsequent exothermic 

product formation will result. The energy of the detonation wave is attenuated as it traverses the 

heavy, diluent region, transferring energy into the stationary, heavy C2 molecules. Since there is no 

possibility of exothermic reaction within the diluent, there is no additional chemical energy released 

to drive the propagating wave in this region. By the time the shock wave reaches the far-right edge 

of the diluent region, it is moving with a slower velocity (therefore, a smaller KE) than it had when 

it first entered that region. As shown in the flyer-plate simulations of pure explosive [20], there is 

a threshold energy needed to compress the pure explosive to the critical density. Apparently, a slab 

of diluent that is at least 104 Ä wide is sufficient to dissipate the energy of the shock wave below the 

threshold value. 

4.2 Solid-Solution Simulations. Two of the three solid solutions (those with concentrations 

of 31.25 and 34.375% Q molecules) result in an unsupported detonation. In the previous work [20], 

detonation is sustained if the number density of the material behind the shock front in the pure 

explosive reaches 0.22 atom/Ä2.* In the present study, solid solutions that attain this number density 

sustain detonation; the solid solution that did not achieve this value did not sustain detonation. Also, 

the reaction zones1" for the two simulations that showed sustained detonation are 22-25 Ä in width, 

-10 Ä wider than that of the pure explosive [20]. A possible explanation for the increased, reaction 

In Rice et. al [20], the analysis was performed in terms of mass density. In the present study, analysis in terms of 
number density is more appropriate. 

In this work and in Rice et. al [20], the reaction zone is defined to be the region between the shock discontinuity and 
the point at which the number of products exceeds that of reactants. 
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zone width is that product formation is sterically hindered by the presence of the diluent. In the 

shock compressed material, the C2 molecules participate in atomization of the A-B molecules to 

form the reactive fragments (according to equation [1]). However, exothermal association of the 

fragments of the reactant A-B molecules could be obstructed by C2 molecules. 

5. Conclusions 

We have shown, using the method of molecular dynamics, simple ways in which a model 

explosive can be tailored with a diluent to desensitize the material. The material was designed to 

exploit the reaction mechanism of the model, which is atomization of the explosive due to high 

compression, followed by the exothermal association of the fragments. Since the first step of the 

reaction involves high compression of the explosive, ways to attenuate the compression wave were 

introduced into the system. The first series of simulations investigated inserting slabs of inert heavy 

molecules into the explosive to absorb energy of the detonation wave. The attenuated shock wave, 

upon reentering explosive, has insufficient energy to achieve the critical compression necessary to 

atomize the reactant molecules. 

The second series of simulations investigated the effect on detonation due to the mixture of a 

diluent with the explosive. The results showed that the diluent absorbs energy of the shock wave 

needed to compress the material to a critical density. The results also suggested that the diluent 

sterically hinders the reactive fragments from exothermic product formation. These two effects 

resulted in quenching the reactions that sustain the detonation. 

This study shows that results obtained from molecular dynamics can be used in design of 

materials with specific performance objectives. The previously reported molecular dynamics 

simulations of the pure explosive established the reaction mechanisms of the models [20,21] and 

the study reported here explore manipulations of the material to affect those reaction mechanisms. 

Clearly, microscale information obtained from this kind of modeling will become a useful and 

integral tool in the design and formulation of explosives with desired detonation characteristics. 
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